1. Каталог >
  2. Клеточные линии, штаммы, среды >
  3. Клеточные линии >
  4. Клеточные линии по типам >
  5. Стволовые клетки >

Стромальные клетки костного мозга крысы: RMSC. Первичные клеточные линии Cell Applications.

Rat Marrow Stromal Cells: RMSC

Стромальные Клетки Костного Мозга Крысы (RMSC) имеют потенциал для поддержания мультипотентности и активно размножаться in vitro. Костный мозг – основной кроветворный орган, но в дополнение к гемапоэтическому росту и дифференциации, стромальные клетки костного мозга могут быть индуцированы для формирования клеток других соединительных тканей, таких как кость, хрящ и жировая ткань, как и клетки нейроэктодермального  (нейроны) и эндодермального (гепатоциты) происхождений.

RMSC от Cell Applications, Inc. были использованы для демонстрации:

(Текст на языке оригинала)
  • TGF-β stimulates production of MCP-1 by vascular smooth muscle cells, which attracts bone marrow stromal cells
  • Cell migration can be stimulated by VPA and lithium through HDAC-CXCR4 and GSK-3β-MMP-9, respectively
  • Therapeutic potential of marrow stromal stem cells depending on the extracellular matrix properties
  • Combination of low-level laser therapy and transplantation of marrow stromal stem cells results in greater functional recovery after nerve crush injury
  • Direct stem cell differentiation by altering physical topography of the substrate
  • Surface materials to control cell-adhesion properties

Параметры

Tissue:
Rat bone marrow. Each lot is tested negative for mycoplasma, bacteria, and fungi.
Cryopreserved ampoule:
2nd passage, >500,000 cells in Rat Marrow Stromal Cell Basal Medium that contains 10% FBS and 10% DMSO.
Kit contains:
Ampoule of cryopreserved RMSC (R492-05a), 500 ml of Rat Marrow Stromal Cell Growth Medium (R419-500), and a Subculture Reagent Kit (090K).
Proliferating Cells:
Shipped in  Rat Marrow Stromal Cell Growth Medium at 2nd passage in either flasks or multiwell dishes.
Population doublings:
Can be cultured at least 10 population doublings


Документы



Публикации

 

2015
Gershlak, J. and L. Black. 2015. Beta 1 integrin binding plays a role in the constant traction force generation in response to varying stiffness for cells grown on mature cardiac extracellular matrix. Experimental Cell Research, 330:311-324.
2014
Neculaes, V., K. Conway, A. Gerner, E. Loghin, S. Yazdanfar, D. Dylov, B. Davis, and C. Joo. 2014. Optical based delivery of exogenous molecules to cells. Patent US 8778682 B2.
2013
Gershlak, J.R., J.I.N. Resnikoff, K.E. Sullivan, C. Williams, R.M. Wang, and L.D. Black Iii. 2013. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochemical & biophysical research comm. 439:161-166.
Yang, C.C., J. Wang, S.C. Chen, and Y.L. Hsieh. 2013. Synergistic effects of lowlevel laser and mesenchymal stem cells on functional recovery in rats with crushed sciatic nerves. J. Tissue Eng. & Regen. Medicine. doi: 10.1002/term.1714
2011
Brammer, K.S., C. Choi, C.J. Frandsen, S. Oh, and S. Jin. 2011. Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation. Acta Biomaterialia. 7:683-690.
Sommani, P., H. Tsuji, H. Sato, Y. Gotoh, and G. Takaoka. 2011. Osteoblast Patterning on Silicone Rubber by using Mesenchymal Stem Cells and Carbon Negative-Ion Implantation. Transactions of the Materials Research Society of Japan, 36:317-320.
Tsuji, H., P. Sommani, Y. Hayashi, H. Kojima, H. Sato, Y. Gotoh, G. Takaoka, and J. Ishikawa. 2011. Surface modification of silica glass by CHF3 plasma treatment and carbon negative-ion implantation for cell pattern adhesion. Surface and Coatings Technology. 206:900-904.
2010
Sommani, P., H. Tsuji, H. Kojima, H. Sato, Y. Gotoh, J. Ishikawa, and G.H. Takaoka. 2010. Irradiation effect of carbon negative-ion implantation on polytetrafluoroethylene for controlling cell-adhesion property. Nuclear Instruments and Methods in Physics Research Section B. 268:3231-3234.
Tsai, L.-K., Y. Leng, Z. Wang, P. Leeds, and D.-M. Chuang. 2010. The Mood Stabilizers Valproic Acid and Lithium Enhance Mesenchymal Stem Cell Migration via Distinct Mechanisms. Neuropsychopharmacology. 35:2225-2237.
2009
Zhang, F., S. Tsai, K. Kato, D. Yamanouchi, C. Wang, S. Rafii, B. Liu, and K.C. Kent. 2009. Transforming Growth Factor-β Promotes Recruitment of Bone Marrow Cells and Bone Marrow-derived Mesenchymal Stem Cells through Stimulation of MCP-1 Production in Vascular Smooth Muscle Cells. J. Biological Chemistry. 284:17564-17574.

 




НазваниеКодЦена
Cryopreserved RMSC R492-05a по запросу



НазваниеКодЦена
RMSC Total Kit: Media, Subculture Reagents & Cells, Adult R492K-05a по запросу



НазваниеКодЦена
Proliferating RMSC R493-25a по запросу
Proliferating RMSC R493-75a по запросу
Proliferating RMSC R493-6Wa по запросу
Proliferating RMSC R493-96Wa по запросу
Proliferating RMSC R493-25 по запросу
Proliferating RMSC R493-6w по запросу
Proliferating RMSC R493-75 по запросу
Proliferating RMSC R493-96w по запросу



НазваниеКодЦена
Basal medium (contains no growth supplement).В  Add GS before use. R418-500 по запросу



НазваниеКодЦена
All-in-one ready-to-use R419-500 по запросу



НазваниеКодЦена
Basal medium & growth supplement sold together packaged separately R419K-500 по запросу



НазваниеКодЦена
Added to Basal Medium to create Growth Medium R419-GS по запросу



НазваниеКодЦена
100 ml each of HBSS, Trypsin/EDTA & Trypsin Neutralizing Solution 090K по запросу



Extended Family Products

НазваниеКодЦена
100 tests 028-S по запросу
500 tests 028-01 по запросу




Информация представлена исключительно в ознакомительных целях и ни при каких условиях не является публичной офертой